Precision Engineering 57 (2019) 16-29

journal homepage: www.elsevier.com/locate/precision

Contents lists available at ScienceDirect

Precision Engineering

Calibration and uncertainty estimation of non-contact coordinate R

Check for

measurement systems based on Kriging models At

Lan Fei”, Jean-Yves Dantan"", Cyrille Baudouin”, Shichang Du"

2 Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, China
Y .CFC, Arts et Métiers ParisTech, HESAM, Université de Lorraine, 4 rue Augustin Fresnel, 57078 Metz Cedex 3, France

ARTICLE INFO ABSTRACT

Keywords:

Coordinate measurement system
Non-contact measurement
Measurement uncertainty
Calibration

Kriging model

Non-contact three dimensional (3D) coordinate measurement systems (CMSs) using optical scanning techniques
have the advantage of fast acquiring large numbers of points. However, these systems are known to be less accurate
in comparison to the contact-based counterparts. To improve the measurement accuracy of non-contact 3D CMSs, a
novel Kriging models-based calibration and uncertainly estimation method is proposed. The spatial correlation of
measurement uncertainty is investigated and the calibration values for unmeasured points based on Kriging models
are estimated. A procedure of best model selection is presented, and the influence of the calibration model

parameters is analyzed. The proposed calibration method is validated through an ATOS II triple scan system. The
results show that a significant accurate improvement for the non-contact 3D measurement system is achieved.

1. Introduction

Since three dimensional (3D) coordinate measurement systems
(CMSs) with optical imaging devices offer the option to output high
density data for parts at high speed, they have been widely used in lab
and industry [1-4]. In recent years, non-contact optical measurement
systems have not only been seen with significant advances in technical
developments, but also undergone a boost in applications, such as
surface quality improvement [5-8], surface error evaluation [9], sur-
face separation [10,11], and tool wear monitoring [12]. However, for
actual camera lenses, such as a fixed length lens, a zoom lens or even an
expensive high-quality telecentric lens, image distortions unavoidably
exist due to lens aberrations, misalignment of optical elements and non-
parallelism between image plane and sensor plane [13-15]. Due to the
non-uniform characteristics of camera lens distortion, actually the co-
ordinates on object surface may cause different values in the sensor
plane. Therefore, measurement results are usually affected by mea-
surement uncertainty, which could lead to technical and economic risks
in industrial applications.

Over the last 30 years, two different methods have been adopted to
achieve high accuracy, namely, uncertainty avoidance and calibration.
Uncertainty avoidance is the traditional method focusing on the reduction
of possible uncertainty sources in the design and manufacturing processes
[16]. Careful design and precise construction can reduce the uncertainty,
but every subsequent micrometer/nanometer of uncertainty reduction will
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cause an exponentially increasing cost. So it is practical to calibrate CMSs
between the measurement coordinate and the actual object.

The calibration and uncertainty estimation method has been ex-
plored as a cost-effective method of improving the accuracy of CMSs
[17-20]. Early developments in calibration are well described by Evans
[21]. Some effective methods are reported in the literature to model
and calibrate CMSs. These methods include polynomial models and
autoregressive moving average models [22], homogeneous coordinate
transformation (HTM) methods [23], neural network based methods
[24-28], D-H models [29,30], fuzzy error interpolation techniques
[31], iterative learning and decoupling methods [32,33], recursive least
squares identification techniques [34], Monte Carlo method [35] and
other analytical methods [36-41].

So far, limited research on the spatial statistics-based methods to
model and calibrate CMSs considering the spatial correlation of the
measurement data has been conducted. The spatial correlation arises
frequently in data measured within certain intervals of space, and the
data indeed exhibits a significant amount of positive autocorrelation
[42]. Measurements are often spatially correlated because they are
obtained in similar manufacturing conditions and related to similar
properties of the machined material [43]. Spatial correlation is different
from temporal correlation, which is usually represented via time series
models. In fact, spatial correlation models allow one to represent con-
tiguity in space rather than in time. Spatial statistics, e.g. Kriging
method, is one of most important meta-models for describe spatial
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correlations in random field [44]. Detailed descriptions of existing re-
search on Kriging meta-models are provided in a review [45].

The literature on spatial statistics-based calibration methods is
sparse. A method based on Co-Kriging models to estimate the errors of
the surface form not only concerning spatial correlation but also con-
cerning the influence of machining conditions is developed in Ref. [46].
A spatial statistical method to design adaptive inspection plans for the
geometric control of mechanical parts with CMSs is presented in Ref.
[47]. The prediction uncertainty of geometric deviations is provided
using Kriging models. A Kriging-based procedure to identify the
minimum of measured points to check the conformity with a given
confidence level in the inspection of large surfaces is presented in Ref.
[48]. An on-line inspection system with error calibration to obtain high
machining accuracy for free-form surface components is proposed in
Ref. [49]. Through the spatial statistical analysis of the residual errors
of a regression model, the errors are decomposed into systematic errors
and random errors. The spatial error compensation methods for com-
puter numerical control (CNC) machining center is proposed in Refs.
[50,51].

In these last applications, Kriging-based procedure to improve in-
spection has proved to be effective. This paper develops a Kriging-based
method to achieve the calibration and uncertainty estimation of non-
contact 3D CMSs. The advantages of this proposed solution are many in
comparison to the classical approaches:

— It is not necessary to develop a complex phenomenological model of
the sensor. The systematic error of a simplified model of the sensor
was corrected by the Kriging model.

— It is possible to adopt an adaptive approach for the calibration.
Based on the uncertainty estimation of the kriging model, it is
possible to identify the spatial area that should be recalibrated.

The proposed Kriging-based method for the calibration of non-
contact 3D CMSs is presented in Section 2. An application of the ap-
proach is illustrated through a case study in Section 3.

2. The proposed calibration method

The aim of this proposed calibration method is to correct the sys-
tematic error of the simplified model of the sensor by a kriging model.
To do so, a gauge is measured. It is important to know the geometrical
characteristics of this gauge. In this application, the GOM gauges are
used.

2.1. The calibration procedure

Fig. 1 shows the calibration procedure of a measurement system,
and the main steps are described as follows.

Step 1. Obtaining measured points and theoretical reference points
of the gauge. A measured point S obtained by 3D CMS is denoted as,

(€Y

where X;_measureds Yi—measured» Zi—measured are three dimensional co-
ordinates of a measured point respectively. These values are ob-
tained from the simplified model of the sensor.

Si—measured = (xi—measured, Yi—measured> Zi—measured)

Based on the geometrical characteristics of the gauge, the co-
ordinate values of theoretical reference points are determined by an
orthogonal projection of the measured points on the gauge surface.
Each measured point is mapped into the corresponding theoretical re-
ference point,

@

where X;_theoretics Y theoretic> Zi—theoretic are three dimensional coordinates
of the theoretical reference points respectively.

Si—theoretic = (xi—theoretic’ Yi—theoretic> Zi—theoretic)
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Ilustration: Case of the sphere (Fig. 1) - To define the theoretical
reference points, the gauge sphere is fitted to the measured points and
each measured point is projected on the fitted gauge sphere.

Step 2. Calculating the measurement errors. A measurement error is
the distance between the measured point and theoretical reference
point at each direction of the axis X, Y, and Z,

Asi = (Axi’ Ayi, Azl) = (Xi—mcasurcda Yi—measured> zi—mcasurcd)
3)

— (i theoretics Yi_theoretic? Zi—theoretic)

A measurement error is discrete in each measured point on the
surface, which needs to be calibrated. It is necessary to use spatial in-
terpolation method to estimate the whole surface of the new measured
part surface to realize the calibration of 3D measurement systems. The
measurement error estimation model is established and applied at any
point of the whole standardized part surface.

Step 3. A Kriging model is used to estimate the calibration
ACy = (Axg, Ay,, AZo) on the specified untried site s, by the re-
sponse. The measurement errors AC; = (Ax;, Ay, Az;) at a set of
measured points S;_measured = (Xi—measureds Y—measureds Zi—measured) (S€€
Fig. 2) are represented as,

AxO = u(xi—measured’ Y —measured> Zi—measured) = u(si—measured)
Ayo = V(xi—measured, Yi—measured > Zi—measured) = v(si—measured)

Azy = W(xi—measured, Yi—measured > Zi—measured) = W(Si—measured)

(4

where u, v, w are the Kriging models with different regression
models and correlation models respectively.

Step 4. The calibration of any areas can be estimated by the Kriging
spatial interpolation model. Therefore, this estimation could be used
to calibrate the measurement error for a new measurement, which
realizes the goal of calibration of 3D CMSs.

2.2. Kriging-based calibration model

Kriging is one of most important spatial statistics-based stochastic
process prediction methods used to produce contour maps of surfaces
derived from regularly or irregularly scattered points in a space. Let D
be the region of a standardized part surface where the calibration value
of measurement error AC is predicted. And n points s = (s, $2,**,8,)
are measured with s; € D fori = 1,2, ---,n. The measurement error AC
(see Fig. 3) can be represented as,

AC(s) = u(s) + 6(s),seD (5)

where s is the variable s = [sy, s5,-,8,]", AC(") is regionalized mea-
surement error, u(-) is the expectation of deterministic structure and
d(-) is a stationary random function with zero mean and known de-
pendence structure.

In order to develop the calibration model, the form of the de-
terministic structure u(-) can be specified by three types of Kriging
models:

— The simple Kriging: u(s) = constant. The constant is known.

— The ordinary Kriging: u(s) = ,. The constant is unknown and es-
timated from the data.

— The universal Kriging: u(s) = 5:1 j; (s)ﬁj. It is a polynomial func-
tion of order 1 (linear universal Kriging, LUK) and of order 2
(quadratic universal Kriging, QUK) at the location s with three di-
mension x, y and z. And ordinary Kriging can be considered as a
special universal Kriging with p = 1 and fi(s) = 1.

The measurement error AC(s) for s € D is considered as a
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Fig. 1. The calibration procedure.
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Fig. 2. Measured point and interpolated point.
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realization of a Gaussian random process:

AC(s) = Bf (s) + &(s) (6)
where f (s) = (f; (5), £, (s),---.f, (s)) is a set of specified trend functions
and g = (B, B, ---,ﬁp)' is a set of coefficients.

The measurement error AC(s) satisfies a Gaussian random process
with zero mean and stationary covariance.

E(AC(s)) = B (s)

Cov(AC(s), AC(s + d)) = 0ZR(d, ) @

where o} is the process variance, and R is the stationary correlation
function (SCF).

The SCF depends only on the displacement vector d between any
pair of points in D and on a set of hyper-parameters 6.

n
R®. s, s) = [ R si—s)

ij=1

(8)

Base on equations (2) and (3), the joint random variable, mea-
surement error, (AC(sy), AC(s;), AC(s>), --,AC(s,)) satisfies a multi-
variate normal function, N ((f(;, F)B, 02%) with

¥ = (1 r(;]
n R ©

where ry is the correlation vector r(sy) = [R(6, s1, So)---R(8, s, 50)]%,
and R is the n X n correlation matrix whose (i,j) element is
R(dj = s; — ).

According to the best unbiased estimate condition of Kriging
method, the mean of estimation of the calibration value AC(s) at the
point sy is:

Hai(80) = AC (80) = f (80)-B* + r(s0)v* = fi* + KER™I(AC" — FB¥)
(10)

where fj is the p X 1 vector of the trend functions in s, F is the n X p
matrix of {fj(sl)}lzl,...v,,, j=1,--,p of the trend functions calculated in
(s1, 82, **+,8y), B is unknown coefficient, and it is generalized by LS es-
timator §* = (F/ R-\F)~'F’ R-'AC.

Moreover, a confidence index about the prediction, called the
Kriging variance, is the mean squared error between the prediction
AC (s) and the actual value AC(s). It is given by:

524(s0) = E((ACy — C(50))?) = 671 — iiR™'y + g (FRF)'g))  (11)

where gy =f, — FRr,  f:f(so), r:r(so); F.[f(s)f ()],
R. [r(s, s1)---r (s, s,)] and o5 is the variance of the process.

0} = —(aC — F(8C — FfY)

(12)

Kriging is an exact interpolation method, so predictions made at any
point s give AC (s) = AC(s). Thus, the Kriging variance is null at these
points.

2.3. Cross-validation of calibration model

Cross-validation is a model validation technique for assessing how
the results of a statistical analysis generalize to an independent data set.
It is mainly used to estimate how accurately a predictive model per-
forms in practice. In order to better realize the calibration of a mea-
surement system, the cross-validation technique is applied to select the
best regression model and correlation model.

Fig. 4 shows the procedure of cross-validation. Several points of the
measurement errors (testing data) are temporarily eliminated and then
the calibration values of the measurement systems are estimated by
Kriging methods using the remaining data (training data). This opera-
tion is repeated for some or all points. Thus at any observation point, it
is calculated by Kriging with an estimated value AC* and an estimation
variance of Kriging o?.

19
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The main steps are described as follows.

Step 1: Generate measurement error with three dimensions
AC; = (Ax;, Ay;, Az;) by the N measured points and nominal points
which are projected on the fitting surface obtained by LS method.
Step 2: Select M points as measured points for the estimation of
calibration and temporarily eliminate the measurement error of the
remaining (N-M) points.

Step 3: Calculate the estimation of calibration and Kriging variance
associated in the remaining (N-M) points.

Step 4: Repeat q times by steps (2) to (3) for each of M.

Step 5: Calculate the cross-validation criterion.

Step 6: Build the box plot (box-whisker plot) for evaluation value of
cross-validation criterion on the M points.

Once the cross-validation is performed, several important criterions
are used to evaluate the performances of the different Kriging methods.
Here is a list of the most popular cross-validation criterions.

n

mean error:ME = 1 Z [AC (s;) — AC*(sy)]
n

i=1 (13)
1 n
mean squared error:MSE = — Z [AC(s) — AC*(s) P
g a4
1 n
root mean squared error:RMSE = \/ Z [AC(s;)) — AC*(s)?
L (15)
1 n
average Kriging standard error:AKSE = |— Z HE))
\\n ¢
i=1 (16)

n

AC(s;) — AC*(s;
mean standardized prediction error:MSPE = 1 Z AC(s) = ACT(s)

ey o5 (s1)
a7
root mean square standardized prediction error
na S_acs) P
:RMSPE = |- [7“(&) ac (Sl)]
\nd o5 (s;) (18)

where AC(s;) is the real measurement error in the site, AC*(s;) is esti-
mated calibration in the site, o5(s;) is the Kriging standard variance
value and n is the number of measured points used for the Kriging es-
timation.

The model is chosen if the cross-validation criterions satisfy:

1) Mean estimation errors (ME) and mean standardized prediction
error (MSPE) are close to 0. This criterion ensures the absence of
bias.

2) The variance of the estimation errors (MSE, RMSE) is lower. This
criterion reflects the robustness of the estimation and it provides the
information on the estimation accuracy.

3) The variance of the standard errors (RMSPE) is closer to 1. It in-
dicates that the standard deviation of Kriging properly reflects the
estimation accuracy.

3. Applications

In this section, several experiments were conducted to illustrate how
the proposed method based on Kriging calibrates a 3D measurement
system and realize the measurement more precise. The calibration
evaluation is analyzed with the comparison for ordinary Kriging and
universal Kriging.
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Sampling M points as the measured
points

v

Eliminate temporarily the measurement
error of the remaining points (N-M)

v

Calculate the estimation of krigeage et
variance de krigeage for the Remaining
points (N-M)

Yes

j<=q is constant

No

4

( Calculate the cross validation criterion on the

points

)

A

(

Build the box plot for the evaluation value of
cross validation criterion on the M points

)

Fig. 4. Procedure of cross validation.

3.1. Experimental setup

The stereoscopic sensor (ATOS II Triple Scan, GOM) is installed on
the manipulator (Fig. 5), which can be used to scan complex surfaces.
The measurement system GOM is calibrated through the proposed ca-
libration method based on a simplified phenomenological model of the

Fig. 5. Measurement system ATOS II TS GOM.

20

sensor.

The experiment measurements were executed on the planes of
gauge (see Fig. 6) and spheres of the gauge (see Fig. 7). To eliminate the
influence of plane position, different positions of planes were measured
by the sensor GOM: lower plane, middle plane, upper plane (blue), and
diagonal plane (green) shown in Fig. 6.

3.2. Calculate measurement uncertainty

In order to reduce systematic errors and realize calibration of the
GOM measurement system, it is firstly important to calculate mea-
surement error on the surfaces.

3.2.1. Plane case

To model the calibration of the GOM sensor on the datum plane, Az,
or Az and Ay are represented as the measurement error corresponding
to the different positions of the plane. For lower, middle, and upper
planes inclined with small angle (less than 10°), Az is used to represent
the calibrations, and for the diagonal plane inclined with large angle
(around 45°), Az and Ay are all used to represent the calibrations (see
Fig. 8).

In Fig. 8, large dots are known as the measure, and the gauge plane
is represented by the line. For the inclined plane with small angle, Az
are the differences between the measured points and projection points
on the gauge plane. For inclined plane with large angle, Az and Ay are
the differences between the measured points (black) and projection
points on the gauge plane.

The measured points in three dimensions
Si—measured = (xi—measured’ Yi—measured> Zi—measured) were obtained by GOM
sensor on the four planes. The gauge planes are shown in Table 1.

According to equation (9) and Fig. 8, the measurement errors
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Fig. 7. Experimental calibration of measured spheres.

(Ax;, Ay, Az;) are calculated by the difference between the measured
coordination data and the coordination of the projected points on the
gauge plane. For lower, middle and upper planes, Az; are calculated,
while for diagonal plane, Ay, and Az; are calculated as the measurement
errors. The results of measurement errors on different planes are shown
in Fig. 9.

Precision Engineering 57 (2019) 16-29

200

-200

-200

Table 1
The fitting planes by LS method.

Plane Number of Gauge plane

points
Lower plane 33678 z = —122.9953 + 0.00010 * x - 0.0516 * y
Middle plane 41051 z = 5.5013 + 0.001953 * x - 0.05085 * y
Upper plane 31894 z = 78.7114 + 0.003069 * x - 0.04998 * y
Diagonal plane 57649 z = 20.2790-0.0125 * x - 0.9290 * y

3.2.2. Sphere case

The calibrated radius of the gauge sphere is 15.0004 mm, and the
coordinate of the sphere center is fitted by LS method using the mea-
sured points (see Fig. 10). The theoretical reference sphere (spherical
datum surface curve) can be obtained. The measurement errors are the
differences between the coordinates of actual measured points and the
coordinates of their projection points on the spherical datum surface,
expressed by (Ax;, Ay,, Az;). The gauge sphere is shown in Table 2. The

(a) Plane with small angle

(b) Plane with large angle

Fig. 8. Calculation of measurement error on calibration plane.

21
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Fig. 9. Measurement errors on different planes (mm).

results of measurement errors on spherical surfaces are shown in
Fig. 11. The measurement uncertainty of the calibrated radius of the
gauge sphere has an impact on the errors assessment and therefore on
the kriging model. GOM gauge was used in this application. The ac-
curacy of the radius form is 0.0012 mm (GOM calibration certificate).

3.3. Calibration results and discussion

3.3.1. Plane case

According to the proposed calibration method based on Kriging for
GOM sensor, the measurement errors calculated at different sites on the
plane are considered as regional variables, and are used to estimate the
calibrations in any other sites. For the lower plane, 1000 three

22

dimensional data and the corresponding measurement errors Az; are
randomly sampled from 33678 measured points. Two experiments were
conducted to provide calibrations in various areas: on the gauge plane
and in a larger cubic space around the gauge plane. The measured
points are collected and used to estimate the calibrations in Fig. 12.
The process of calibration calculation is explained for the un-
measured points in Fig. 12. For sampling in a larger cubic space, 1,000
points are collected by rectangular grid method in the larger cubic
space around the fitting mean plane (Fig. 12 (a)). Then the calibrations
of these 1000 points are predicted using previously calculated mea-
surement error data Az; selected from 33678 by random sampling
method. While sampling on the fitting plane, 2912 (52 * 56) points are
collected by mesh grid method on the fitting mean plane (Fig. 12 (b)).
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Fig. 10. Calculation of measurement error on calibration sphere.

Table 2
The fitting sphere by LS method.
X Y Z
Gauge center of sphere —85.2707 65.6985 —55.4355
Measured radius 15.0088 mm
Gauge radius 15.0004 mm
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Then the calibrations of these 2912 points are estimated using the same
known measurement error data.

To estimate calibrations for sampling on the fitting plane, two methods
are defined in the calculation (see Fig. 13). The first one is that the cali-
bration is directly based on the positions of points
Azp = W(xi—measured’ Yi—measured> Zi—measured) (Caﬂed direct methOd)' The
second one is based on Kriging described as follow. The height value of Z
has spatial correlation with the positions X and Y. Thus, the estimation of
the value Z is calculated by Kriging Method 2§ = f (Xi_measured> Yi—measured)-
The calibration is obtained by the difference between the estimated value z,
and the projection point on the fitting plane Az, = z; (point predicted) — z
(point projected on the fitting plane). For the diagonal plane, measurement
error along Y axis is calculated in the same way.

Calibrations in both areas are estimated by the Kriging method, the
calibrations Az, in the cubic space and on the fitting plane are shown in
Fig. 14. The left image shows the estimated calibration, and the right
image is the variance of estimation.

The distribution of the estimated calibration depends greatly on the
distribution of the measurement error. If the point is closer to the ex-
pected measured points, the variance of the estimate is lower. The
variance of the estimation in the cubic space is symmetrical along the
gauge plane and lower around the gauge plane.

It is important to choose the appropriate Kriging method including
correlation model and regression model corresponding to the sampling
strategy in order to reduce the estimation variance. Table 3 shows that

B5 T e ....... RESAEMAL L
. IR S B pove o
| . A & PN,

Y fmm

B5 N CIRALY, o il I 4
B0

55k........:

- : : 2
-0 100 95 -0 -85 -B0 75 -70

......... 0.05

0.04

SD 1 i H
-105  -100 95 -90 -85
Hfmm

(¢) The meausrement errors of Z axis

Fig. 11. Measurement error on the spherical datum surface (mm).
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Fig. 12. Spatial sampling for the calibration area.
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Fig. 13. Flow diagram of the measurement error calibration on datum plane.

3.4. Sensitivity analysis of different numbers of points to construct meta-

the results of estimation and variance in process of calibration. Ac-
model

cording to Table 3, when the exponential model is chosen as the cor-
relation model and Ordinary Kriging is chosen as the regression model
in Fig. 14(a) and (b), and Universal Kriging is chosen in Fig. 14 (c)
respectively, the estimation variances 022 (sg) are minimized.

The cross-validation method not only helps to choose the appro-
priate Kriging method to estimate the calibration of the GOM sensor,
but also assists to decide the number of measurement error applied to
construct meta-model of calibration. The sensitivity analysis on dif-
ferent initial number of points to construct meta-model is conducted

3.3.2. Sphere case
Two experiments were conducted to provide calibrations in various according to the process of cross-validation in Fig. 4, and the main steps
are described as follows.

areas: in the cubic space and on the gauge sphere shown in Fig. 15. The
estimation points on the spherical datum surface are shown in Fig. 16,
and results of calibration estimation and estimation error variance on
the spherical datum surface are shown in Fig. 17. The calibration of
GOM sensor can be achieved at any sites of the full-field area of mea-
surement by the proposed Kriging method. For a new measurement
mission, the calibration of the measurement system can be auto-
matically compensated to the results of the measures.

1) Generate the measurement error Az; by the N measured points
(N = 33678).

2) Randomly select M = 10, 50, 100, 300, 500 points from the N
measured points for the estimation of calibration and temporarily
eliminate the measurement error of the remaining points (N-M).

3) Calculate the estimation and Kriging variance associated in the
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(c) Estimation of the calibration on the fitting plane by Kriging method
Fig. 14. Result of estimation of the calibration and variance of estimation.
remaining points. According to Fig. 18, some conclusions can be obtained:
4) Repeat 50 times steps (2) to (3) for each M points.
5) Calculate the cross-validation criterion 1) The average estimation errors (ME) and standard errors (MSE) is
6) Build the box plot (box-whisker plot) of cross-validation criterion for closer to 0 with the increasing number.
evaluation. 2) The variance of estimation errors (MSE, RMSE) is lower with greater
number of points. This criterion reflects the robustness of the esti-
Fig. 18 shows the results of different cross-validation criterion ME, mator and information on the accuracy of the estimation.
MSE, RMSE, AKSE, MSPE and RMSPE with different numbers of mea- 3) The values of MSPE with different numbers of points converge to 0.
sured points for the creation of meta-model Kriging. But RMSPE has a fluctuation with the increasing number of points,
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Table 3
Results of estimation and variance in process of calibration.
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In the cubic space

On the fitting plane by Direct method

On the fitting plane by Kriging method

Estimation Variance Estimation

Variance Estimation Variance
Mean 2.08E-04 5.50E-05 2.30E-04 4.99E-05
Min —7.61E-02 2.40E-05 —7.94E-02 4.88E-06 —8.31E-02 1.39E-06
Max 9.03E-02 7.10E-04 9.92E-02 1.90E-04 1.08E-01 1.71E-04

Regression model
Correlation model

Ordinary Kriging
Exponential model

Universal Kriging

and at last converges to the specific value, 1.

Thus, the accuracy of the estimation of calibrations is increased by
the number of measured points for the creation of meta-model. But the
accuracy is priced by measurement cost and the calculation time.
Generally, the more number of points used to estimate the calibration
by Kriging method, the higher accuracy of estimation is achieved. So it
is important to choose the appropriate number of points for the meta-
model creation. The best indication is the variability RMSPE.

o RMSPE = 1 indicates that the prediction of the calibration is correct
and effective.

e RMSPE> 1 indicates that the prediction is overestimated, which
means to reduce the measurement information.

o RMSPE <1 indicates that the prediction is underestimated, which
means to increase the measurement information.

The variability of RMSPE by Ordinary Kriging and by Universal
Kriging are shown in Fig. 19. For Ordinary Kriging, 50 or 100 measured
points lead to a less than 1 RMSPE, but for 500 points it is greater than
1. This indicates that 500 measured points are sufficient for the pre-
diction of calibrations. If more points are used for the calculation, the
variability of the prediction will be overestimated. For Universal Kri-
ging, 500 measured points are not enough to perform the calibration.
For an industrial application, a reference threshold of RMSPE could be
defined to optimize the needed number of measured points.

3.5. Spatial correlation analysis for measurement uncertainty

A convenient choice for the correlation function is within the power

40 ..

50]. s

aio =

o ATy

ANl

604 Vst

Z

=

-70 N
80 4.

90

-100
50 -110

(a) sampling in the cubic space

50 -110

Fig. 16. Estimation points on the spherical datum surface.

exponential model and spherical model. Spatial correlation functions
are d = lls; — s;ll.

e Exponential model: R;(6, d;) = exp(—6;|d;|)
e Gaussian model: R;(6, d;) = exp(—6;d})
e Spherical model: R;(6, d)) = 1 — 15§ + 0.5¢}, §; = min{1, §;d; }

Fig. 20 shows the spatial correlation influenced by distance and 6.

50 -110

(b) sampling on the fitting sphere

Fig. 15. Spatial sampling for the calibration area.
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Fig. 17. Results of calibration estimation and estimation error variance on the spherical datum surface.
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27

RMSE(correxp,regpoly1,theta0=[1,1,1])

0.04
0.035
0.03 ? ?
0.025 L
0.02 +
0.015 L
=
0.01 —
=
0.005 ==
10 50 100 300 500
RMSPE(correxp,regpoly1,theta0=[1,1,1])
+
+
2
15 T
+
| % f
0.5
10 50 100 300

500



L. Fei, et al.

RMSPE(correx p,regpoly 0.thetal=[1,1,1])

B[]
14 ...|. ...................................

O e T

06f--f------ e

[+ +
#{H

Precision Engineering 57 (2019) 16-29

RMSPE(correx p,regpoly 1,thetal=[1,1,1])

T
+

2 ________________________________________
T

4B o oo s

H
HH
+n+
4

DB frmTrmmr oz T

(a) Ordinary Kriging

(b) Universal Kriging

Fig. 19. Results of the comparison of the number of measured points.
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From Fig. 20, it is observed that the correlation decreases with d and a
larger value for 6 leads to a faster decrease.

4. Conclusion

In this paper, a novel Kriging models-based calibration and un-
certainty estimation method is developed to improve the measurement
accuracy of non-contact 3D CMSs. This calibration procedure has been
tested on a measurement system with the GOM sensor, which served as
a tool of measurement after calibration. The results of calibrations are

28

used to compensate and correct the measurement system to perform a
new measure. The cross-validation technique is applied to select the
best Kriging model and decide the initial measured points to create the
meta-model. The accuracy of the results and the effective of the cali-
bration estimation impact on the measurement time and on the com-
putation time. The results show that fitted calibration surface obtained
through Kriging-based method can provide accurate estimation of the
calibration for the new measurement. As shown in Fig. 17, the accuracy
of the results with the kriging compensation is 10 times the accuracy of
the results without the kriging compensation.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.precisioneng.2019.02.004.
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